

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen

http://www-i2.informatik.rwth-aachen.de/

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

Advanced Model Checking Summer term 2014

- Series 1 -

Hand in on April 23rd before the exercise class.

Exercise 1

(2+1 points)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. The relations $\sim_n \subseteq S \times S$, $n \in \mathbb{N}$, are inductively defined by:

- $s_1 \sim_0 s_2$ iff $L(s_1) = L(s_2)$.
- $s_1 \sim_{n+1} s_2$ iff:
 - $-L(s_1) = L(s_2),$
 - for all $s'_1 \in Post(s_1)$ there exists $s'_2 \in Post(s_2)$ with $s'_1 \sim_n s'_2$,
 - for all $s'_2 \in Post(s_2)$ there exists $s'_1 \in Post(s_1)$ with $s'_1 \sim_n s'_2$.

Questions:

(i) Show that for finite TS it holds that $\sim_{TS} = \bigcap_{n>0} \sim_n$, i.e.,

$$s_1 \sim_{TS} s_2$$
 iff $s_1 \sim_n s_2$ for all $n \ge 0$

(ii) Does this also hold for infinite transition systems (provide either a proof or a counterexample)?

Exercise 2

(3 points)

Which of the following transition systems are bisimulation equivalent? Justify your answers by either providing a bisimulation relation or a $\text{CTL}_{\setminus U}$ formula that distinguishes the considered transition systems. (Note: a $\text{CTL}_{\setminus U}$ formula contains neither an *U*-operator nor one of its derived operators such as \diamond and \Box)

Exercise 3

Consider the transition system TS over $AP=\{a,b\}$ shown in the figure below:

- (a) Determine the bisimulation equivalence \sim_{TS} and depict the bisimulation quotient system TS/\sim .
- (b) Provide CTL master formulae Φ_C for each bisimulation equivalence class $C \in S/\sim$.