
Lecture 18: True Concurrency Semantics of Petri Nets (2)

Concurrency Theory
Lecture 18: True Concurrency Semantics of Petri Nets (2)

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-19-20/ct

December 10, 2019

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 1/43

http://moves.rwth-aachen.de/teaching/ws-19-20/ct

Lecture 18: True Concurrency Semantics of Petri Nets (2)

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 2/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 3/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Introduction

I Interleaving semantics of Petri nets = set of sequential runs
I a sequential run is a total ordering of transition occurrences

I The set of all sequential runs can be represented by a marking graph

I Partial-order semantics of Petri nets = set of distributed runs
I a distributed run is an acyclic (causal) net which contains no choices
I a distributed run is a partial ordering of transition occurrences

I Today: the set of all distributed runs can be represented by a specific
branching process, the unfolding

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Introduction

I Interleaving semantics of Petri nets = set of sequential runs
I a sequential run is a total ordering of transition occurrences

I The set of all sequential runs can be represented by a marking graph

I Partial-order semantics of Petri nets = set of distributed runs
I a distributed run is an acyclic (causal) net which contains no choices
I a distributed run is a partial ordering of transition occurrences

I Today: the set of all distributed runs can be represented by a specific
branching process, the unfolding

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Introduction

I Interleaving semantics of Petri nets = set of sequential runs
I a sequential run is a total ordering of transition occurrences

I The set of all sequential runs can be represented by a marking graph

I Partial-order semantics of Petri nets = set of distributed runs
I a distributed run is an acyclic (causal) net which contains no choices
I a distributed run is a partial ordering of transition occurrences

I Today: the set of all distributed runs can be represented by a specific
branching process, the unfolding

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Introduction

I Interleaving semantics of Petri nets = set of sequential runs
I a sequential run is a total ordering of transition occurrences

I The set of all sequential runs can be represented by a marking graph

I Partial-order semantics of Petri nets = set of distributed runs
I a distributed run is an acyclic (causal) net which contains no choices
I a distributed run is a partial ordering of transition occurrences

I Today: the set of all distributed runs can be represented by a specific
branching process, the unfolding

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs

I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.
I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.
I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.

I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.
I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.

I The true concurrency semantics of a net is a specific branching
process, called unfolding.

I A net unfolding is the true concurrency counterpart of a marking
graph.

I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.

I A net unfolding is the true concurrency counterpart of a marking
graph.

I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.

I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.
I It is the unique maximal branching process in a complete lattice.

I The reachable markings of a 1-bounded net are covered by a finite
prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Introduction

Branching process: preamble

I A branching process represents a set of distributed runs
I It explicitly represents each possible resolution of each choice1

I It is an acyclic (occurrence) net containing choices.
I It is a partial ordering with conflicts of transition occurrences.
I The true concurrency semantics of a net is a specific branching

process, called unfolding.
I A net unfolding is the true concurrency counterpart of a marking

graph.
I It is the unique maximal branching process in a complete lattice.
I The reachable markings of a 1-bounded net are covered by a finite

prefix of this maximal branching process.

1In net jargon, a choice is called a conflict.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 6/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Elementary system nets

Net
An elementary net system N is a tuple (P,T ,F ,M0) where:
I P is a countable set of places
I T is a countable set of transitions with P ∩ T = ∅
I F ⊆ (P × T) ∪ (T × P) are the arcs satisfying:

∀t ∈ T . •t and t• are finite and non-empty

I M0 : P → IN is the initial marking.
Places and transitions are generically called nodes.

Assumption: (possibly) infinite elementary nets are 1-bounded. Thus any
marking can be viewed as a subset of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 7/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Elementary system nets

Net
An elementary net system N is a tuple (P,T ,F ,M0) where:
I P is a countable set of places
I T is a countable set of transitions with P ∩ T = ∅
I F ⊆ (P × T) ∪ (T × P) are the arcs satisfying:

∀t ∈ T . •t and t• are finite and non-empty

I M0 : P → IN is the initial marking.
Places and transitions are generically called nodes.

Assumption: (possibly) infinite elementary nets are 1-bounded. Thus any
marking can be viewed as a subset of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 7/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets

A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.

It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:

1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place

2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic

3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element

4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:

1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1

2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive

3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite

4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Properties of causal nets

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Absence of superfluous places and transitions
Every causal net has a step sequence that visits all places and fires every
transition.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Properties of causal nets

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Absence of superfluous places and transitions
Every causal net has a step sequence that visits all places and fires every
transition.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Properties of causal nets

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Absence of superfluous places and transitions
Every causal net has a step sequence that visits all places and fires every
transition.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net K
2. in which each transition t (with •t and t•) is an action of N.

A distributed run K of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦ does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net K
2. in which each transition t (with •t and t•) is an action of N.

A distributed run K of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦ does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net K
2. in which each transition t (with •t and t•) is an action of N.

A distributed run K of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦ does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net K
2. in which each transition t (with •t and t•) is an action of N.

A distributed run K of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦ does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms

Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and
3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms
Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that:

2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and
3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms
Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and

2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)
and •h(t) (in N2), and similarly for t• and h(t)•, and

3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms
Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and

3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms
Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and
3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Net homomorphisms
Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and
3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Distributed run using homomorphisms

Distributed run [Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K , h) where K
is a causal net and h is a homomorphism from K to N.4

Intuition
A distributed run (K , h) of N may be viewed as a net K of which the places and
transitions are labeled by places and transitions of N such that the labeling h
forms a net homomorphism from K to N.5

4Best and Fernandez called this a process of a net.
5In the previous lecture, the labeling h was explicitly given as `.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 13/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Distributed run using homomorphisms

Distributed run [Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K , h) where K
is a causal net and h is a homomorphism from K to N.4

Intuition
A distributed run (K , h) of N may be viewed as a net K of which the places and
transitions are labeled by places and transitions of N

such that the labeling h
forms a net homomorphism from K to N.5

4Best and Fernandez called this a process of a net.
5In the previous lecture, the labeling h was explicitly given as `.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 13/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Distributed run using homomorphisms

Distributed run [Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K , h) where K
is a causal net and h is a homomorphism from K to N.4

Intuition
A distributed run (K , h) of N may be viewed as a net K of which the places and
transitions are labeled by places and transitions of N such that the labeling h
forms a net homomorphism from K to N.5

4Best and Fernandez called this a process of a net.
5In the previous lecture, the labeling h was explicitly given as `.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 13/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Distributed runs

Examples

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 14/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 15/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Conflicts

A distributed run is based on a causal net. A branching process on an
occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict
Let N = (P,T ,F ,M) be a net. Nodes x1 and x2 are in conflict, denoted
x1#x2, if there exist distinct transitions t1, t2 ∈ T such that
•t1 ∩ pret2 6= ∅ and (t1, x1) ∈ F ∗ and (t2, x2) ∈ F ∗.
Node x is in self-conflict whenever x#x .

Examples
On the black board.

Note that in a causal net # = ∅ as •t1 ∩ •t2 = ∅ for any two distinct
transitions t1 and t2.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Conflicts

A distributed run is based on a causal net. A branching process on an
occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict
Let N = (P,T ,F ,M) be a net. Nodes x1 and x2 are in conflict, denoted
x1#x2, if there exist distinct transitions t1, t2 ∈ T such that
•t1 ∩ pret2 6= ∅ and (t1, x1) ∈ F ∗ and (t2, x2) ∈ F ∗.
Node x is in self-conflict whenever x#x .

Examples
On the black board.

Note that in a causal net # = ∅ as •t1 ∩ •t2 = ∅ for any two distinct
transitions t1 and t2.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Conflicts

A distributed run is based on a causal net. A branching process on an
occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict
Let N = (P,T ,F ,M) be a net. Nodes x1 and x2 are in conflict, denoted
x1#x2, if there exist distinct transitions t1, t2 ∈ T such that
•t1 ∩ pret2 6= ∅ and (t1, x1) ∈ F ∗ and (t2, x2) ∈ F ∗.
Node x is in self-conflict whenever x#x .

Examples
On the black board.

Note that in a causal net # = ∅ as •t1 ∩ •t2 = ∅ for any two distinct
transitions t1 and t2.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Conflicts

A distributed run is based on a causal net. A branching process on an
occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict
Let N = (P,T ,F ,M) be a net. Nodes x1 and x2 are in conflict, denoted
x1#x2, if there exist distinct transitions t1, t2 ∈ T such that
•t1 ∩ pret2 6= ∅ and (t1, x1) ∈ F ∗ and (t2, x2) ∈ F ∗.
Node x is in self-conflict whenever x#x .

Examples
On the black board.

Note that in a causal net # = ∅ as •t1 ∩ •t2 = ∅ for any two distinct
transitions t1 and t2.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Occurrence net

Occurrence net
A net K = (Q,V ,G ,M) is an occurrence net iff:
1. for each q ∈ Q, |•q| 6 1
2. the transitive closure G+ of G is irreflexive
3. for each node x ∈ Q ∪ V we have { y | (y , x) ∈ G+ } is finite
4. no transition v ∈ V is in self-conflict
5. M0 = ◦K = { q ∈ Q | •q = ∅ }.

Remark
Since # = ∅ in a causal net, and each causal net fulfils the remaining conditions,
every causal net is an occurrence net.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 17/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Occurrence net

Occurrence net
A net K = (Q,V ,G ,M) is an occurrence net iff:
1. for each q ∈ Q, |•q| 6 1
2. the transitive closure G+ of G is irreflexive
3. for each node x ∈ Q ∪ V we have { y | (y , x) ∈ G+ } is finite
4. no transition v ∈ V is in self-conflict
5. M0 = ◦K = { q ∈ Q | •q = ∅ }.

Remark
Since # = ∅ in a causal net, and each causal net fulfils the remaining conditions,
every causal net is an occurrence net.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 17/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Example

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 18/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Branching process

Branching process [Engelfriet 1991]

A branching process of net N is a pair (K , h) where K = (Q,V ,G ,M) is
an occurrence net and h a net homomorphism from K to N such that:

∀v , v ′ ∈ Q.
(•v = •v ′ and h(v) = h(v ′) implies v = v ′

)
.

Every distributed run is a branching process. The reverse is not true.

Examples
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Branching process

Branching process [Engelfriet 1991]

A branching process of net N is a pair (K , h) where K = (Q,V ,G ,M) is
an occurrence net and h a net homomorphism from K to N such that:

∀v , v ′ ∈ Q.
(•v = •v ′ and h(v) = h(v ′) implies v = v ′

)
.

Every distributed run is a branching process. The reverse is not true.

Examples
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Branching process

Branching process [Engelfriet 1991]

A branching process of net N is a pair (K , h) where K = (Q,V ,G ,M) is
an occurrence net and h a net homomorphism from K to N such that:

∀v , v ′ ∈ Q.
(•v = •v ′ and h(v) = h(v ′) implies v = v ′

)
.

Every distributed run is a branching process. The reverse is not true.

Examples
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Examples

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 20/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Branching processes

Properties of branching processes

Let K be a branching process of net N. Then:
1. A place of K can get marked at most once, and an event (aka:

transition) of K can occur at most once in any step sequence of K
2. For Q′ ⊆ Q: K has some reachable marking M with Q′ ⊆ M if and

only if all places in Q′ are pairwise concurrent.

Nodes x , y are concurrent if neither (x , y) ∈ G+, nor (y , x) ∈ G+ nor x#y .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 21/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 22/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Relating branching processes

Homomorphisms and isomorphisms between branching processes
Let B1 = (K1, h1) and B2 = (K2, h2) be two branching processes of net N.
A homomorphism from B1 to B2 is a homomorphism h from K1 to K2
such that h2 ◦ h = h1.6

An isomorphism is a bijective homomorphism. B1 and B2 are isomorphic if
there is an isomorphism from B1 to B2.

Being isomorphic is an equivalence relation. Its equivalence classes are
called isomorphism classes.

6The composition of two net homomorphisms is a net homomorphism.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 23/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Relating branching processes

Homomorphisms and isomorphisms between branching processes
Let B1 = (K1, h1) and B2 = (K2, h2) be two branching processes of net N.
A homomorphism from B1 to B2 is a homomorphism h from K1 to K2
such that h2 ◦ h = h1.6

An isomorphism is a bijective homomorphism. B1 and B2 are isomorphic if
there is an isomorphism from B1 to B2.

Being isomorphic is an equivalence relation. Its equivalence classes are
called isomorphism classes.

6The composition of two net homomorphisms is a net homomorphism.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 23/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Relating branching processes

Homomorphisms and isomorphisms between branching processes
Let B1 = (K1, h1) and B2 = (K2, h2) be two branching processes of net N.
A homomorphism from B1 to B2 is a homomorphism h from K1 to K2
such that h2 ◦ h = h1.6

An isomorphism is a bijective homomorphism. B1 and B2 are isomorphic if
there is an isomorphism from B1 to B2.

Being isomorphic is an equivalence relation. Its equivalence classes are
called isomorphism classes.

6The composition of two net homomorphisms is a net homomorphism.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 23/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Intuition
B1 approximates B2 whenever every (partial) distributed run in B1 is also
contained in B2. In other words, B1 is isomorphic to an initial part of B2. Being
an approximation on branching processes is the analogue of being a prefix on
sequences.

Examples
On the black board. Obviously, v is a partial order on branching processes.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 24/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Intuition
B1 approximates B2 whenever every (partial) distributed run in B1 is also
contained in B2. In other words, B1 is isomorphic to an initial part of B2. Being
an approximation on branching processes is the analogue of being a prefix on
sequences.

Examples
On the black board. Obviously, v is a partial order on branching processes.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 24/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Intuition
B1 approximates B2 whenever every (partial) distributed run in B1 is also
contained in B2. In other words, B1 is isomorphic to an initial part of B2. Being
an approximation on branching processes is the analogue of being a prefix on
sequences.

Examples
On the black board. Obviously, v is a partial order on branching processes.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 24/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Examples

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 25/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Lemma
Approximation is preserved by isomorphism: if B′i is isomorphic to Bi (for
i = 1, 2), then B1 v B2 implies B′1 v B′2. Thus, v can be extended to a
partial order on isomorphism classes (of branching processes).

Proof.
Home exercise. Basically juggling with homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Lemma
Approximation is preserved by isomorphism: if B′i is isomorphic to Bi (for
i = 1, 2), then B1 v B2 implies B′1 v B′2. Thus, v can be extended to a
partial order on isomorphism classes (of branching processes).

Proof.
Home exercise. Basically juggling with homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Lemma
Approximation is preserved by isomorphism: if B′i is isomorphic to Bi (for
i = 1, 2), then B1 v B2 implies B′1 v B′2. Thus, v can be extended to a
partial order on isomorphism classes (of branching processes).

Proof.
Home exercise. Basically juggling with homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Approximation of branching processes

Approximation
Let B1 and B2 be two branching processes of net N. B1 approximates B2,
denoted B1 v B2, if there exists an injective homomorphism from B1 to
B2.

Lemma
Approximation is preserved by isomorphism: if B′i is isomorphic to Bi (for
i = 1, 2), then B1 v B2 implies B′1 v B′2. Thus, v can be extended to a
partial order on isomorphism classes (of branching processes).

Proof.
Home exercise. Basically juggling with homomorphisms.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Engelfriet’s theorem

Engelfriet’s branching process theorem
The set of isomorphism classes of branching processes of net N is a
complete lattice with respect to the approximation relation v. Formally,
(B,v) is a complete partial order, where B is the set of isomorphism
classes of branching processes.

Complete lattice
Recall that a complete lattice is a partial order (B,v) such that all subsets of B
have LUBs and GLBs.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 27/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Engelfriet’s theorem

Engelfriet’s branching process theorem
The set of isomorphism classes of branching processes of net N is a
complete lattice with respect to the approximation relation v. Formally,
(B,v) is a complete partial order, where B is the set of isomorphism
classes of branching processes.

Complete lattice
Recall that a complete lattice is a partial order (B,v) such that all subsets of B
have LUBs and GLBs.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 27/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

Engelfriet’s theorem

Engelfriet’s branching process theorem
The set of isomorphism classes of branching processes of net N is a
complete lattice with respect to the approximation relation v. Formally,
(B,v) is a complete partial order, where B is the set of isomorphism
classes of branching processes.

Complete lattice
Recall that a complete lattice is a partial order (B,v) such that all subsets of B
have LUBs and GLBs.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 27/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

The true concurrency semantics of a net

Corollary: the unfolding of a net
Every one-bounded net has a unique maximal (with respect to v)
branching process up to isomorphism. This is called the unfolding or true
concurrency semantics of net N.

We denote by Bmax = ((Pmax,Tmax,Fmax), hmax) a representative of the
isomorphism class of the maximal branching process of N.

Example
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 28/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

The true concurrency semantics of a net

Corollary: the unfolding of a net
Every one-bounded net has a unique maximal (with respect to v)
branching process up to isomorphism. This is called the unfolding or true
concurrency semantics of net N.
We denote by Bmax = ((Pmax,Tmax,Fmax), hmax) a representative of the
isomorphism class of the maximal branching process of N.

Example
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 28/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

The true concurrency semantics of a net

Corollary: the unfolding of a net
Every one-bounded net has a unique maximal (with respect to v)
branching process up to isomorphism. This is called the unfolding or true
concurrency semantics of net N.
We denote by Bmax = ((Pmax,Tmax,Fmax), hmax) a representative of the
isomorphism class of the maximal branching process of N.

Example
On the black board.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 28/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) The true concurrency semantics of a net

The true concurrency semantics of Petri nets

The true concurrency semantics of a Petri net is given by its unfolding.

Recall: The interleaving semantics of a Petri net is given by its marking
graph.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 29/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 30/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Finite prefix
The maximal branching process under v may be infinite.

Prefix of maximal branching process
Branching process B = (P,T ,F ,M0) is a prefix of Bmax if B v Bmax and
P ⊆ Pmax and T ⊆ Tmax. B is finite whenever P and T are finite.

Finite prefix existence theorem [McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix Bfin of Bmax
that covers all reachable markings of N. The size of the finite prefix can
maximally be exponential in the size of N.

Proof.
Follows directly from two facts:
1. Every reachable marking is represented by some cut of Bmax, and
2. The set of reachable markings of a finite one-bounded net is finite.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 31/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Finite prefix
The maximal branching process under v may be infinite.

Prefix of maximal branching process
Branching process B = (P,T ,F ,M0) is a prefix of Bmax if B v Bmax and
P ⊆ Pmax and T ⊆ Tmax. B is finite whenever P and T are finite.

Finite prefix existence theorem [McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix Bfin of Bmax
that covers all reachable markings of N. The size of the finite prefix can
maximally be exponential in the size of N.

Proof.
Follows directly from two facts:
1. Every reachable marking is represented by some cut of Bmax, and
2. The set of reachable markings of a finite one-bounded net is finite.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 31/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Finite prefix
The maximal branching process under v may be infinite.

Prefix of maximal branching process
Branching process B = (P,T ,F ,M0) is a prefix of Bmax if B v Bmax and
P ⊆ Pmax and T ⊆ Tmax. B is finite whenever P and T are finite.

Finite prefix existence theorem [McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix Bfin of Bmax
that covers all reachable markings of N. The size of the finite prefix can
maximally be exponential in the size of N.

Proof.
Follows directly from two facts:
1. Every reachable marking is represented by some cut of Bmax, and
2. The set of reachable markings of a finite one-bounded net is finite.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 31/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Finite prefix
The maximal branching process under v may be infinite.

Prefix of maximal branching process
Branching process B = (P,T ,F ,M0) is a prefix of Bmax if B v Bmax and
P ⊆ Pmax and T ⊆ Tmax. B is finite whenever P and T are finite.

Finite prefix existence theorem [McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix Bfin of Bmax
that covers all reachable markings of N. The size of the finite prefix can
maximally be exponential in the size of N.

Proof.
Follows directly from two facts:
1. Every reachable marking is represented by some cut of Bmax, and
2. The set of reachable markings of a finite one-bounded net is finite.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 31/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations

Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.
The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run. Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations
Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.

The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run. Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations
Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.
The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run. Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations
Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.
The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run.

Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations
Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.
The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run. Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Configurations
Configurations
Let K = (Q,V ,G ,M0) be an occurrence net, ≺= G+ and �= G∗.
The set C ⊆ V is a configuration of K whenever:
1. x ∈ C implies y ∈ C , for all y � x (downward-closed wrt. �)
2. ∀x , y ∈ C .¬(x#y) (conflict-free)

Intuition and examples
A configuration can be seen as the set of transitions that have occurred so
far in a distributed run. Examples on the black board.

Fact
For configuration C of Bmax (of net N), and x1 . . . xn a linearisation of the
transitions in C (respecting �), the sequence hmax(x1) . . . hmax(tn) is a sequential
run of the original net N.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cuts

Cuts
Let C be a finite configuration of a branching process B = (K , h). Then:

Cut(C) = (◦K ∪ C•) \•C .

If B is a branching process of N, then h(Cut(C)) is a reachable marking of
net N. We denote h(Cut(C)) by M(C), the marking of configuration C .

Intuition
Cuts correspond to markings reached by firing all transitions in a given
finite configuration.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 33/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cuts

Cuts
Let C be a finite configuration of a branching process B = (K , h).

Then:

Cut(C) = (◦K ∪ C•) \•C .

If B is a branching process of N, then h(Cut(C)) is a reachable marking of
net N. We denote h(Cut(C)) by M(C), the marking of configuration C .

Intuition
Cuts correspond to markings reached by firing all transitions in a given
finite configuration.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 33/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cuts

Cuts
Let C be a finite configuration of a branching process B = (K , h). Then:

Cut(C) = (◦K ∪ C•) \•C .

If B is a branching process of N, then h(Cut(C)) is a reachable marking of
net N. We denote h(Cut(C)) by M(C), the marking of configuration C .

Intuition
Cuts correspond to markings reached by firing all transitions in a given
finite configuration.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 33/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cuts

Cuts
Let C be a finite configuration of a branching process B = (K , h). Then:

Cut(C) = (◦K ∪ C•) \•C .

If B is a branching process of N, then h(Cut(C)) is a reachable marking of
net N. We denote h(Cut(C)) by M(C), the marking of configuration C .

Intuition
Cuts correspond to markings reached by firing all transitions in a given
finite configuration.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 33/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cuts

Cuts
Let C be a finite configuration of a branching process B = (K , h). Then:

Cut(C) = (◦K ∪ C•) \•C .

If B is a branching process of N, then h(Cut(C)) is a reachable marking of
net N. We denote h(Cut(C)) by M(C), the marking of configuration C .

Intuition
Cuts correspond to markings reached by firing all transitions in a given
finite configuration.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 33/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Example

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 34/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Transition causes

Transition causes
Let K = (Q,V ,G) be an occurrence net and v ∈ V . The set [v] of causes
of v is defined by:

[v] = { v ′ ∈ V | v ′ � v }.

(Recall that � denotes G∗, the reflexive and transitive closure of G .)

Example
On the black board

Facts

1. For each v , [v] is a finite configuration.
2. For every configuration C of K , either v 6∈ C or [v] ⊆ C .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 35/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Transition causes

Transition causes
Let K = (Q,V ,G) be an occurrence net and v ∈ V . The set [v] of causes
of v is defined by:

[v] = { v ′ ∈ V | v ′ � v }.

(Recall that � denotes G∗, the reflexive and transitive closure of G .)

Example
On the black board

Facts

1. For each v , [v] is a finite configuration.
2. For every configuration C of K , either v 6∈ C or [v] ⊆ C .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 35/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Transition causes

Transition causes
Let K = (Q,V ,G) be an occurrence net and v ∈ V . The set [v] of causes
of v is defined by:

[v] = { v ′ ∈ V | v ′ � v }.

(Recall that � denotes G∗, the reflexive and transitive closure of G .)

Example
On the black board

Facts

1. For each v , [v] is a finite configuration.
2. For every configuration C of K , either v 6∈ C or [v] ⊆ C .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 35/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cut-off event

Cut-off event
Let Bmax = ((Pmax,Tmax,Gmax), hmax). Transition t ∈ Tmax is a cut-off
transition if there exists a transition t ′ ∈ Tmax ∪ {⊥} such that:

|[t ′]| < |[t]| and M([t]) = M([t ′]).

Dummy transition
Remark: ⊥ is a dummy transition having no input places and ◦Bmax as output
places, for which we let [⊥] = ∅. This yields that if M([t]) = M0, then t is a
cut-off transition.

Fact
If |[t ′]| < |[t]| and M([t]) = M([t ′]), then the “continuations” of Bmax
from Cut([t]) and Cut([t ′]) are isomorphic.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cut-off event
Cut-off event
Let Bmax = ((Pmax,Tmax,Gmax), hmax). Transition t ∈ Tmax is a cut-off
transition if there exists a transition t ′ ∈ Tmax ∪ {⊥} such that:

|[t ′]| < |[t]| and M([t]) = M([t ′]).

Dummy transition
Remark: ⊥ is a dummy transition having no input places and ◦Bmax as output
places, for which we let [⊥] = ∅. This yields that if M([t]) = M0, then t is a
cut-off transition.

Fact
If |[t ′]| < |[t]| and M([t]) = M([t ′]), then the “continuations” of Bmax
from Cut([t]) and Cut([t ′]) are isomorphic.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cut-off event
Cut-off event
Let Bmax = ((Pmax,Tmax,Gmax), hmax). Transition t ∈ Tmax is a cut-off
transition if there exists a transition t ′ ∈ Tmax ∪ {⊥} such that:

|[t ′]| < |[t]| and M([t]) = M([t ′]).

Dummy transition
Remark: ⊥ is a dummy transition having no input places and ◦Bmax as output
places, for which we let [⊥] = ∅. This yields that if M([t]) = M0, then t is a
cut-off transition.

Fact
If |[t ′]| < |[t]| and M([t]) = M([t ′]), then the “continuations” of Bmax
from Cut([t]) and Cut([t ′]) are isomorphic.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Cut-off event
Cut-off event
Let Bmax = ((Pmax,Tmax,Gmax), hmax). Transition t ∈ Tmax is a cut-off
transition if there exists a transition t ′ ∈ Tmax ∪ {⊥} such that:

|[t ′]| < |[t]| and M([t]) = M([t ′]).

Dummy transition
Remark: ⊥ is a dummy transition having no input places and ◦Bmax as output
places, for which we let [⊥] = ∅. This yields that if M([t]) = M0, then t is a
cut-off transition.

Fact
If |[t ′]| < |[t]| and M([t]) = M([t ′]), then the “continuations” of Bmax
from Cut([t]) and Cut([t ′]) are isomorphic.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

McMillan prefix

McMillan prefix
The McMillan prefix of one-bounded net N is the branching process Bfin,
the unique prefix of Bmax having Tfin as set of transitions satisfying for
each t ∈ Tmax::

t ∈ Tfin iff no transition t ′ ≺ t is a cut-off transition.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 37/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

McMillan prefix

McMillan prefix
The McMillan prefix of one-bounded net N is the branching process Bfin,
the unique prefix of Bmax having Tfin as set of transitions satisfying for
each t ∈ Tmax::

t ∈ Tfin iff no transition t ′ ≺ t is a cut-off transition.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 37/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process

2. Add transitions one at the time, in order of increasing size of their
sets of causes

3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added
before t

4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors
are not explored

5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their

sets of causes

3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added
before t

4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors
are not explored

5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their

sets of causes
3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added

before t

4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors
are not explored

5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their

sets of causes
3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added

before t
4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors

are not explored

5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their

sets of causes
3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added

before t
4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors

are not explored
5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Computing the McMillan prefix
Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their

sets of causes
3. On adding t, compare M([t]) with M([t ′]) for each t ′ that was added

before t
4. If M([t]) = M([t ′]), then t is a cut-off transition, and its successors

are not explored
5. Terminate when no further transitions can be added.

Remark
Termination is ensured by the finiteness of the number of reachable markings on
N, as N is one-bounded.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 38/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Example net and one of its branching processes

A sample one-bounded elementary
system net

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 39/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Example net and one of its branching processes

A sample one-bounded elementary
system net

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 39/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Its McMillan prefix

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 40/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

Its McMillan prefix

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 40/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) McMillan’s finite prefix

An exponentially-sized McMillan prefix

For every marking M all the configurations [t] satisfying M([t]) = M have the
same size, and therefore there exist no cut-off events [Kishinevsky and Taubin]

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 41/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan’s finite prefix

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 42/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

Lecture 18: True Concurrency Semantics of Petri Nets (2) Summary

Summary
I A branching process captures several distributed runs of N

I It is represented by a relaxed notion of causal net, the occurrence net

I Branching processes are mapped to N via homomorphisms

I A homomorphism is a structure-preserving mapping between two nets

I Approximation (denoted v) is a partial-order on branching processes

I Isomorphic branching process with v are a complete lattice

I True concurrency semantics of N = the maximal element (under v)

I For 1-bounded nets, the McMillan prefix covers all reachable markings
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 43/43

	Introduction
	Distributed runs
	Branching processes
	The true concurrency semantics of a net
	McMillan's finite prefix
	Summary

