Concurrency Theory Lecture 18: True Concurrency Semantics of Petri Nets (2)

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-19-20/ct

December 10, 2019

Joost-Pieter Katoen and Thomas Noll

Overview

1 Introduction

- 2 Distributed runs
- 3 Branching processes
 - 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix

Overview

Introduction

- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix

Interleaving semantics of Petri nets = set of sequential runs

a sequential run is a total ordering of transition occurrences

Interleaving semantics of Petri nets = set of sequential runs

a sequential run is a total ordering of transition occurrences

▶ The set of all sequential runs can be represented by a marking graph

- Interleaving semantics of Petri nets = set of sequential runs
 - a sequential run is a total ordering of transition occurrences
- ► The set of all sequential runs can be represented by a marking graph
- Partial-order semantics of Petri nets = set of distributed runs
 - ▶ a distributed run is an acyclic (causal) net which contains no choices
 - a distributed run is a partial ordering of transition occurrences

- Interleaving semantics of Petri nets = set of sequential runs
 - a sequential run is a total ordering of transition occurrences
- ► The set of all sequential runs can be represented by a marking graph
- Partial-order semantics of Petri nets = set of distributed runs
 - ▶ a distributed run is an acyclic (causal) net which contains no choices
 - a distributed run is a partial ordering of transition occurrences
- Today: the set of all distributed runs can be represented by a specific branching process, the unfolding

A branching process represents a set of distributed runs

¹In net jargon, a choice is called a conflict.

- ► A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.
- It is a partial ordering with conflicts of transition occurrences.

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.
- It is a partial ordering with conflicts of transition occurrences.
- The true concurrency semantics of a net is a specific branching process, called unfolding.

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.
- It is a partial ordering with conflicts of transition occurrences.
- The true concurrency semantics of a net is a specific branching process, called unfolding.
- A net unfolding is the true concurrency counterpart of a marking graph.

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.
- It is a partial ordering with conflicts of transition occurrences.
- The true concurrency semantics of a net is a specific branching process, called unfolding.
- A net unfolding is the true concurrency counterpart of a marking graph.
- ▶ It is the unique maximal branching process in a complete lattice.

¹In net jargon, a choice is called a conflict.

- A branching process represents a set of distributed runs
- It explicitly represents each possible resolution of each choice¹
- It is an acyclic (occurrence) net containing choices.
- It is a partial ordering with conflicts of transition occurrences.
- The true concurrency semantics of a net is a specific branching process, called unfolding.
- A net unfolding is the true concurrency counterpart of a marking graph.
- ▶ It is the unique maximal branching process in a complete lattice.
- The reachable markings of a 1-bounded net are covered by a finite prefix of this maximal branching process.

¹In net jargon, a choice is called a conflict.

Overview

Introduction

2 Distributed runs

- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix

Elementary system nets

Net

An elementary net system N is a tuple (P, T, F, M_0) where:

- P is a countable set of places
- T is a countable set of transitions with $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$ are the arcs satisfying:

 $\forall t \in T$. •*t* and *t*• are finite and non-empty

• $M_0: P \to \mathbb{N}$ is the initial marking.

Places and transitions are generically called nodes.

Elementary system nets

Net

An elementary net system N is a tuple (P, T, F, M_0) where:

- P is a countable set of places
- T is a countable set of transitions with $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$ are the arcs satisfying:

 $\forall t \in T$. •*t* and *t*• are finite and non-empty

• $M_0: P \to \mathbb{N}$ is the initial marking.

Places and transitions are generically called nodes.

Assumption: (possibly) infinite elementary nets are 1-bounded. Thus any marking can be viewed as a subset of places.

A causal net constitutes the basis for a "distributed" run.

A causal net constitutes the basis for a "distributed" run. It is a (possibly infinite) net which satisfies:

A causal net constitutes the basis for a "distributed" run. It is a (possibly infinite) net which satisfies:

1. It has no place branches: at most one arc ends or starts in a place

A causal net constitutes the basis for a "distributed" run.

It is a (possibly infinite) net which satisfies:

- 1. It has no place branches: at most one arc ends or starts in a place
- 2. It is acyclic

A causal net constitutes the basis for a "distributed" run. It is a (possibly infinite) net which satisfies:

- 1. It has no place branches: at most one arc ends or starts in a place
- 2. It is acyclic
- 3. Each sequences of arcs (flows) has a unique first element

A causal net constitutes the basis for a "distributed" run. It is a (possibly infinite) net which satisfies:

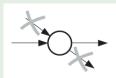
- 1. It has no place branches: at most one arc ends or starts in a place
- 2. It is acyclic
- 3. Each sequences of arcs (flows) has a unique first element
- 4. The initial marking contains all places without incoming arcs.

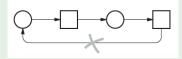
A causal net constitutes the basis for a "distributed" run. It is a (possibly infinite) net which satisfies:

- 1. It has no place branches: at most one arc ends or starts in a place
- 2. It is acyclic
- 3. Each sequences of arcs (flows) has a unique first element
- 4. The initial marking contains all places without incoming arcs.

Intuition

No place branches, no sequence of arcs forms a loop, and each sequence of arcs has a first node.





A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

Causal net

A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

Causal net

A (possibly infinite) net $K = (Q, V, G, M_0)$ is called a causal net iff:

1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$ and $|q^{ullet}| \leqslant 1$

A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

Causal net

- 1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$ and $|q^{ullet}| \leqslant 1$
- 2. the transitive closure (called causal order) G^+ of G is irreflexive

A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

Causal net

- 1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$ and $|q^{ullet}| \leqslant 1$
- 2. the transitive closure (called causal order) G^+ of G is irreflexive
- 3. for each node $x \in Q \cup V$, the set $\{ y \mid (y, x) \in G^+ \}$ is finite

A causal net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

- 1. Has no place branches: at most one arc ends or starts in a place
- 2. Is acyclic
- 3. Each sequences of arcs (flows) has a first element
- 4. The initial marking contains all places without incoming arcs

Causal net

- 1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$ and $|q^{ullet}| \leqslant 1$
- 2. the transitive closure (called causal order) G^+ of G is irreflexive
- 3. for each node $x \in Q \cup V$, the set $\{ y \mid (y, x) \in G^+ \}$ is finite
- 4. M_0 equals the minimal set of places in K under G^+ , i.e.,

$$M_0 = {}^{\circ}K = \{ q \in Q \mid \bullet q = \varnothing \}.$$

Properties of causal nets

Properties of causal nets

Boundedness of causal nets

Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

Properties of causal nets

Boundedness of causal nets

Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

Absence of superfluous places and transitions

Every causal net has a step sequence that visits all places and fires every transition.

What is a distributed run?

Distributed run

A distributed run of a one-bounded elementary net system N is:

- 1. a labeled causal net K
- 2. in which each transition t (with t and t) is an action of N.

What is a distributed run?

Distributed run

A distributed run of a one-bounded elementary net system N is:

- 1. a labeled causal net K
- 2. in which each transition t (with t and t) is an action of N.

A distributed run K of N is complete iff (the marking) $^{\circ}K$ represents the initial marking of N and (the marking) K° does not enable any transition.

What is a distributed run?

Distributed run

A distributed run of a one-bounded elementary net system N is:

- 1. a labeled causal net K
- 2. in which each transition t (with t and t) is an action of N.

A distributed run K of N is complete iff (the marking) $^{\circ}K$ represents the initial marking of N and (the marking) K° does not enable any transition.

Examples on the black board.

What is a distributed run?

Distributed run

A distributed run of a one-bounded elementary net system N is:

- 1. a labeled causal net K
- 2. in which each transition t (with t and t) is an action of N.

A distributed run K of N is complete iff (the marking) $^{\circ}K$ represents the initial marking of N and (the marking) K° does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

Homomorphism

A homomorphism from $N_1 = (P_1, T_1, F_1, M_{0,1})$ to $N_2 = (P_2, T_2, F_2, M_{0,2})$ is a mapping $h: P_1 \cup T_1 \to P_2 \cup T_2$ such that:

Homomorphism

A homomorphism from $N_1 = (P_1, T_1, F_1, M_{0,1})$ to $N_2 = (P_2, T_2, F_2, M_{0,2})$ is a mapping $h: P_1 \cup T_1 \to P_2 \cup T_2$ such that: ²

1. $h(P_1) \subseteq P_2$ and $h(T_1) \subseteq T_2$, and

Homomorphism

A homomorphism from $N_1 = (P_1, T_1, F_1, M_{0,1})$ to $N_2 = (P_2, T_2, F_2, M_{0,2})$ is a mapping $h: P_1 \cup T_1 \to P_2 \cup T_2$ such that: ²

- 1. $h(P_1) \subseteq P_2$ and $h(T_1) \subseteq T_2$, and
- 2. $\forall t \in T_1$, the restriction of h to $\bullet t$ is a bijection between $\bullet t$ (in N_1) and $\bullet h(t)$ (in N_2), and similarly for t^{\bullet} and $h(t)^{\bullet}$, and

Homomorphism

A homomorphism from $N_1 = (P_1, T_1, F_1, M_{0,1})$ to $N_2 = (P_2, T_2, F_2, M_{0,2})$ is a mapping $h: P_1 \cup T_1 \to P_2 \cup T_2$ such that: ²

- 1. $h(P_1) \subseteq P_2$ and $h(T_1) \subseteq T_2$, and
- 2. $\forall t \in T_1$, the restriction of h to $\bullet t$ is a bijection between $\bullet t$ (in N_1) and $\bullet h(t)$ (in N_2), and similarly for t^{\bullet} and $h(t)^{\bullet}$, and
- 3. the restriction of h to $M_{0,1}$ is a bijection between $M_{0,1}$ and $M_{0,2}$.³

Homomorphism

A homomorphism from $N_1 = (P_1, T_1, F_1, M_{0,1})$ to $N_2 = (P_2, T_2, F_2, M_{0,2})$ is a mapping $h: P_1 \cup T_1 \to P_2 \cup T_2$ such that: ²

- 1. $h(P_1) \subseteq P_2$ and $h(T_1) \subseteq T_2$, and
- 2. $\forall t \in T_1$, the restriction of h to $\bullet t$ is a bijection between $\bullet t$ (in N_1) and $\bullet h(t)$ (in N_2), and similarly for t^{\bullet} and $h(t)^{\bullet}$, and
- 3. the restriction of h to $M_{0,1}$ is a bijection between $M_{0,1}$ and $M_{0,2}$.³

Intuition

A homomorphism is a mapping between nets that preserves the nature of nodes and the environment of nodes. A homomorphism from N_1 to N_2 means that N_1 can be folded onto a part of N_2 , or in other words, that N_1 can be obtained by partially unfolding a part of N_2 .

Distributed run using homomorphisms

Distributed run

[Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K, h) where K is a causal net and h is a homomorphism from K to N.⁴

⁴Best and Fernandez called this a process of a net.

⁵In the previous lecture, the labeling *h* was explicitly given as ℓ .

Joost-Pieter Katoen and Thomas Noll

Concurrency Theory

Distributed run using homomorphisms

Distributed run

[Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K, h) where K is a causal net and h is a homomorphism from K to N.⁴

Intuition

A distributed run (K, h) of N may be viewed as a net K of which the places and transitions are labeled by places and transitions of N

Joost-Pieter Katoen and Thomas Noll

Concurrency Theory

⁴Best and Fernandez called this a process of a net.

⁵In the previous lecture, the labeling *h* was explicitly given as ℓ .

Distributed run using homomorphisms

Distributed run

[Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K, h) where K is a causal net and h is a homomorphism from K to N.⁴

Intuition

A distributed run (K, h) of N may be viewed as a net K of which the places and transitions are labeled by places and transitions of N such that the labeling h forms a net homomorphism from K to N.⁵

Joost-Pieter Katoen and Thomas Noll

⁴Best and Fernandez called this a process of a net.

⁵In the previous lecture, the labeling *h* was explicitly given as ℓ .

Examples

Overview

Introduction

2 Distributed runs

3 Branching processes

The true concurrency semantics of a net

5 McMillan's finite prefix

A distributed run is based on a causal net. A branching process on an occurrence net. Main difference: the presence of conflicts (aka: choices).

A distributed run is based on a causal net. A branching process on an occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict

Let N = (P, T, F, M) be a net. Nodes x_1 and x_2 are in conflict, denoted $x_1 \# x_2$, if there exist distinct transitions $t_1, t_2 \in T$ such that • $t_1 \cap pret_2 \neq \emptyset$ and $(t_1, x_1) \in F^*$ and $(t_2, x_2) \in F^*$.

Node x is in self-conflict whenever x # x.

A distributed run is based on a causal net. A branching process on an occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict

Let N = (P, T, F, M) be a net. Nodes x_1 and x_2 are in conflict, denoted $x_1 \# x_2$, if there exist distinct transitions $t_1, t_2 \in T$ such that • $t_1 \cap pret_2 \neq \emptyset$ and $(t_1, x_1) \in F^*$ and $(t_2, x_2) \in F^*$.

Node x is in self-conflict whenever x # x.

Examples

On the black board.

A distributed run is based on a causal net. A branching process on an occurrence net. Main difference: the presence of conflicts (aka: choices).

Conflict

Let N = (P, T, F, M) be a net. Nodes x_1 and x_2 are in conflict, denoted $x_1 \# x_2$, if there exist distinct transitions $t_1, t_2 \in T$ such that • $t_1 \cap pret_2 \neq \emptyset$ and $(t_1, x_1) \in F^*$ and $(t_2, x_2) \in F^*$.

Node x is in self-conflict whenever x # x.

Examples

On the black board.

Note that in a causal net $\# = \emptyset$ as ${}^{\bullet}t_1 \cap {}^{\bullet}t_2 = \emptyset$ for any two distinct transitions t_1 and t_2 .

Occurrence net

Occurrence net

A net K = (Q, V, G, M) is an occurrence net iff:

- 1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$
- 2. the transitive closure G^+ of G is irreflexive
- 3. for each node $x \in Q \cup V$ we have $\{ y \mid (y, x) \in G^+ \}$ is finite

4. no transition $v \in V$ is in self-conflict

5.
$$M_0 = {}^{\circ}K = \{ q \in Q \mid \bullet q = \varnothing \}.$$

Occurrence net

Occurrence net

A net
$$K = (Q, V, G, M)$$
 is an occurrence net iff:

- 1. for each $q \in Q$, $|{}^{ullet}q| \leqslant 1$
- 2. the transitive closure G^+ of G is irreflexive
- 3. for each node $x \in Q \cup V$ we have $\{ y \mid (y, x) \in G^+ \}$ is finite
- 4. no transition $v \in V$ is in self-conflict
- 5. $M_0 = {}^{\circ}K = \{ q \in Q \mid \bullet q = \varnothing \}.$

Remark

Since $\# = \emptyset$ in a causal net, and each causal net fulfils the remaining conditions, every causal net is an occurrence net.

Example

Branching process

Branching process

[Engelfriet 1991]

A branching process of net N is a pair (K, h) where K = (Q, V, G, M) is an occurrence net and h a net homomorphism from K to N such that:

$$orall v, v' \in Q. \ ({}^{ullet}v = {}^{ullet}v' ext{ and } h(v) = h(v') ext{ implies } v = v')$$
 .

Branching process

Branching process

[Engelfriet 1991]

A branching process of net N is a pair (K, h) where K = (Q, V, G, M) is an occurrence net and h a net homomorphism from K to N such that:

$$orall v,\,v'\in Q.\,\,({}^{ullet}v=\,{}^{ullet}v'\,\, ext{and}\,\,h(v)=h(v')\quad ext{implies}\quad v=v')\,.$$

Every distributed run is a branching process. The reverse is not true.

Branching process

Branching process

[Engelfriet 1991]

A branching process of net N is a pair (K, h) where K = (Q, V, G, M) is an occurrence net and h a net homomorphism from K to N such that:

$$orall v, v' \in Q. \ (ullet v = ullet v' ext{ and } h(v) = h(v') \quad ext{implies} \quad v = v')$$
 .

Every distributed run is a branching process. The reverse is not true.

Examples

On the black board.

Examples

Properties of branching processes

Let K be a branching process of net N. Then:

- 1. A place of K can get marked at most once, and an event (aka: transition) of K can occur at most once in any step sequence of K
- 2. For $Q' \subseteq Q$: K has some reachable marking M with $Q' \subseteq M$ if and only if all places in Q' are pairwise concurrent.

Nodes x, y are concurrent if neither $(x, y) \in G^+$, nor $(y, x) \in G^+$ nor x # y.

Overview

Introduction

- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix

Relating branching processes

Homomorphisms and isomorphisms between branching processes

Let $B_1 = (K_1, h_1)$ and $B_2 = (K_2, h_2)$ be two branching processes of net N. A homomorphism from B_1 to B_2 is a homomorphism h from K_1 to K_2 such that $h_2 \circ h = h_1$.⁶

⁶The composition of two net homomorphisms is a net homomorphism.

Relating branching processes

Homomorphisms and isomorphisms between branching processes

Let $B_1 = (K_1, h_1)$ and $B_2 = (K_2, h_2)$ be two branching processes of net N. A homomorphism from B_1 to B_2 is a homomorphism h from K_1 to K_2 such that $h_2 \circ h = h_1$.⁶

An isomorphism is a bijective homomorphism. B_1 and B_2 are isomorphic if there is an isomorphism from B_1 to B_2 .

⁶The composition of two net homomorphisms is a net homomorphism.

Relating branching processes

Homomorphisms and isomorphisms between branching processes

Let $B_1 = (K_1, h_1)$ and $B_2 = (K_2, h_2)$ be two branching processes of net N. A homomorphism from B_1 to B_2 is a homomorphism h from K_1 to K_2 such that $h_2 \circ h = h_1$.⁶

An isomorphism is a bijective homomorphism. B_1 and B_2 are isomorphic if there is an isomorphism from B_1 to B_2 .

Being isomorphic is an equivalence relation. Its equivalence classes are called isomorphism classes.

⁶The composition of two net homomorphisms is a net homomorphism.

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Intuition

 B_1 approximates B_2 whenever every (partial) distributed run in B_1 is also contained in B_2 . In other words, B_1 is isomorphic to an initial part of B_2 . Being an approximation on branching processes is the analogue of being a prefix on sequences.

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Intuition

 B_1 approximates B_2 whenever every (partial) distributed run in B_1 is also contained in B_2 . In other words, B_1 is isomorphic to an initial part of B_2 . Being an approximation on branching processes is the analogue of being a prefix on sequences.

Examples

On the black board. Obviously, \sqsubseteq is a partial order on branching processes.

Examples

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Approximation of branching processes

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Lemma

Approximation is preserved by isomorphism: if B'_i is isomorphic to B_i (for i = 1, 2), then $B_1 \sqsubseteq B_2$ implies $B'_1 \sqsubseteq B'_2$. Thus, \sqsubseteq can be extended to a partial order on isomorphism classes (of branching processes).

Approximation of branching processes

Approximation

Let B_1 and B_2 be two branching processes of net N. B_1 approximates B_2 , denoted $B_1 \sqsubseteq B_2$, if there exists an injective homomorphism from B_1 to B_2 .

Lemma

Approximation is preserved by isomorphism: if B'_i is isomorphic to B_i (for i = 1, 2), then $B_1 \sqsubseteq B_2$ implies $B'_1 \sqsubseteq B'_2$. Thus, \sqsubseteq can be extended to a partial order on isomorphism classes (of branching processes).

Proof.

Home exercise. Basically juggling with homomorphisms.

Engelfriet's theorem

Engelfriet's theorem

Engelfriet's branching process theorem

The set of isomorphism classes of branching processes of net N is a **complete lattice** with respect to the approximation relation \sqsubseteq . Formally, $(\mathbb{B}, \sqsubseteq)$ is a complete partial order, where \mathbb{B} is the set of isomorphism classes of branching processes.

Engelfriet's theorem

Engelfriet's branching process theorem

The set of isomorphism classes of branching processes of net N is a **complete lattice** with respect to the approximation relation \sqsubseteq . Formally, $(\mathbb{B}, \sqsubseteq)$ is a complete partial order, where \mathbb{B} is the set of isomorphism classes of branching processes.

Complete lattice

Recall that a complete lattice is a partial order $(\mathbb{B}, \sqsubseteq)$ such that all subsets of \mathbb{B} have LUBs and GLBs.

The true concurrency semantics of a net

Corollary: the unfolding of a net

Every one-bounded net has a unique maximal (with respect to \sqsubseteq) branching process up to isomorphism. This is called the unfolding or true concurrency semantics of net N.

The true concurrency semantics of a net

Corollary: the unfolding of a net

Every one-bounded net has a unique maximal (with respect to \sqsubseteq) branching process up to isomorphism. This is called the unfolding or true concurrency semantics of net N.

We denote by $B_{\text{max}} = ((P_{\text{max}}, T_{\text{max}}, F_{\text{max}}), h_{\text{max}})$ a representative of the isomorphism class of the maximal branching process of N.

The true concurrency semantics of a net

Corollary: the unfolding of a net

Every one-bounded net has a unique maximal (with respect to \sqsubseteq) branching process up to isomorphism. This is called the unfolding or true concurrency semantics of net N.

We denote by $B_{\text{max}} = ((P_{\text{max}}, T_{\text{max}}, F_{\text{max}}), h_{\text{max}})$ a representative of the isomorphism class of the maximal branching process of N.

Example

On the black board.

The true concurrency semantics of Petri nets

The true concurrency semantics of a Petri net is given by its unfolding.

Recall: The interleaving semantics of a Petri net is given by its marking graph.

Overview

Introduction

- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- McMillan's finite prefix

6 Summary

The maximal branching process under \sqsubseteq may be infinite.

The maximal branching process under \sqsubseteq may be infinite.

Prefix of maximal branching process

Branching process $B = (P, T, F, M_0)$ is a prefix of B_{max} if $B \sqsubseteq B_{max}$ and $P \subseteq P_{max}$ and $T \subseteq T_{max}$. *B* is finite whenever *P* and *T* are finite.

The maximal branching process under \sqsubseteq may be infinite.

Prefix of maximal branching process

Branching process $B = (P, T, F, M_0)$ is a prefix of B_{max} if $B \sqsubseteq B_{max}$ and $P \subseteq P_{max}$ and $T \subseteq T_{max}$. B is finite whenever P and T are finite.

Finite prefix existence theorem

[McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix B_{fin} of B_{max} that covers all reachable markings of N. The size of the finite prefix can maximally be exponential in the size of N.

The maximal branching process under \sqsubseteq may be infinite.

Prefix of maximal branching process

Branching process $B = (P, T, F, M_0)$ is a prefix of B_{max} if $B \sqsubseteq B_{max}$ and $P \subseteq P_{max}$ and $T \subseteq T_{max}$. B is finite whenever P and T are finite.

Finite prefix existence theorem

[McMillan, 1992]

For every finite one-bounded net N, there exists a finite prefix B_{fin} of B_{max} that covers all reachable markings of N. The size of the finite prefix can maximally be exponential in the size of N.

Proof.

Follows directly from two facts:

- 1. Every reachable marking is represented by some cut of $B_{\rm max}$, and
- 2. The set of reachable markings of a finite one-bounded net is finite.

McMillan's finite prefix

Configurations

Configurations

Let $K = (Q, V, G, M_0)$ be an occurrence net, $\prec = G^+$ and $\preceq = G^*$.

Configurations

Let $K = (Q, V, G, M_0)$ be an occurrence net, $\prec = G^+$ and $\preceq = G^*$. The set $C \subseteq V$ is a configuration of K whenever:

- 1. $x \in C$ implies $y \in C$, for all $y \preceq x$
- 2. $\forall x, y \in C. \neg (x \# y)$

(downward-closed wrt. \preceq)

(conflict-free)

Configurations

Let $K = (Q, V, G, M_0)$ be an occurrence net, $\prec = G^+$ and $\preceq = G^*$. The set $C \subseteq V$ is a configuration of K whenever:

- 1. $x \in C$ implies $y \in C$, for all $y \preceq x$
- 2. $\forall x, y \in C. \neg (x \# y)$

(downward-closed wrt. \preceq)

(conflict-free)

Intuition and examples

A configuration can be seen as the set of transitions that have occurred so far in a distributed run.

Configurations

Let $K = (Q, V, G, M_0)$ be an occurrence net, $\prec = G^+$ and $\preceq = G^*$. The set $C \subseteq V$ is a configuration of K whenever:

- 1. $x \in C$ implies $y \in C$, for all $y \preceq x$
- 2. $\forall x, y \in C. \neg (x \# y)$

(downward-closed wrt. \preceq)

(conflict-free)

Intuition and examples

A configuration can be seen as the set of transitions that have occurred so far in a distributed run. Examples on the black board.

Configurations

Let $K = (Q, V, G, M_0)$ be an occurrence net, $\prec = G^+$ and $\preceq = G^*$. The set $C \subseteq V$ is a configuration of K whenever:

- 1. $x \in C$ implies $y \in C$, for all $y \preceq x$
- 2. $\forall x, y \in C. \neg (x \# y)$

(downward-closed wrt. \preceq)

(conflict-free)

Intuition and examples

A configuration can be seen as the set of transitions that have occurred so far in a distributed run. Examples on the black board.

Fact

For configuration C of B_{\max} (of net N), and $x_1 \dots x_n$ a linearisation of the transitions in C (respecting \leq), the sequence $h_{\max}(x_1) \dots h_{\max}(t_n)$ is a sequential run of the original net N.

Cuts

Let C be a finite configuration of a branching process B = (K, h).

Cuts

Let C be a finite configuration of a branching process B = (K, h). Then:

 $Cut(C) = (^{\circ}K \cup C^{\bullet}) \setminus ^{\bullet}C.$

Cuts

Let C be a finite configuration of a branching process B = (K, h). Then:

 $Cut(C) = (^{\circ}K \cup C^{\bullet}) \setminus^{\bullet}C.$

If B is a branching process of N, then h(Cut(C)) is a reachable marking of net N. We denote h(Cut(C)) by M(C), the marking of configuration C.

Cuts

Let C be a finite configuration of a branching process B = (K, h). Then:

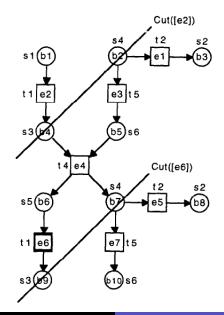
 $Cut(C) = (^{\circ}K \cup C^{\bullet}) \setminus ^{\bullet}C.$

If B is a branching process of N, then h(Cut(C)) is a reachable marking of net N. We denote h(Cut(C)) by M(C), the marking of configuration C.

Intuition

Cuts correspond to markings reached by firing all transitions in a given finite configuration.

Example



Transition causes

Transition causes

Let K = (Q, V, G) be an occurrence net and $v \in V$. The set [v] of causes of v is defined by:

$$[v] = \{ v' \in V \mid v' \preceq v \}.$$

(Recall that \leq denotes G^* , the reflexive and transitive closure of G.)

Transition causes

Transition causes

Let K = (Q, V, G) be an occurrence net and $v \in V$. The set [v] of causes of v is defined by:

$$[v] = \{ v' \in V \mid v' \preceq v \}.$$

(Recall that \leq denotes G^* , the reflexive and transitive closure of G.)

Example

On the black board

Transition causes

Transition causes

Let K = (Q, V, G) be an occurrence net and $v \in V$. The set [v] of causes of v is defined by:

$$[v] = \{ v' \in V \mid v' \preceq v \}.$$

(Recall that \leq denotes G^* , the reflexive and transitive closure of G.)

Example

On the black board

Facts

- 1. For each v, [v] is a finite configuration.
- 2. For every configuration C of K, either $v \notin C$ or $[v] \subseteq C$.

McMillan's finite prefix

Cut-off event

Cut-off event

Cut-off event

Let $B_{\max} = ((P_{\max}, T_{\max}, G_{\max}), h_{\max})$. Transition $t \in T_{\max}$ is a cut-off transition if there exists a transition $t' \in T_{\max} \cup \{\bot\}$ such that:

$$|[t']| < |[t]|$$
 and $M([t]) = M([t'])$.

Cut-off event

Cut-off event

Let $B_{\max} = ((P_{\max}, T_{\max}, G_{\max}), h_{\max})$. Transition $t \in T_{\max}$ is a cut-off transition if there exists a transition $t' \in T_{\max} \cup \{\bot\}$ such that:

$$\left| [t'] \right| < \left| [t] \right|$$
 and $M([t]) = M([t'])$.

Dummy transition

Remark: \perp is a dummy transition having no input places and $^{\circ}B_{\max}$ as output places, for which we let $[\perp] = \emptyset$. This yields that if $M([t]) = M_0$, then t is a cut-off transition.

Cut-off event

Cut-off event

Let $B_{\max} = ((P_{\max}, T_{\max}, G_{\max}), h_{\max})$. Transition $t \in T_{\max}$ is a cut-off transition if there exists a transition $t' \in T_{\max} \cup \{\bot\}$ such that:

$$\left| [t'] \right| < \left| [t] \right|$$
 and $M([t]) = M([t'])$.

Dummy transition

Remark: \perp is a dummy transition having no input places and $^{\circ}B_{\max}$ as output places, for which we let $[\perp] = \emptyset$. This yields that if $M([t]) = M_0$, then t is a cut-off transition.

Fact

If |[t']| < |[t]| and M([t]) = M([t']), then the "continuations" of B_{\max} from Cut([t]) and Cut([t']) are isomorphic.

McMillan's finite prefix

McMillan prefix

McMillan prefix

McMillan prefix

The McMillan prefix of one-bounded net N is the branching process B_{fin} , the unique prefix of B_{max} having T_{fin} as set of transitions satisfying for each $t \in T_{\text{max}}$::

 $t \in T_{fin}$ iff no transition $t' \prec t$ is a cut-off transition.

Computing the McMillan prefix

Algorithm

1. Start with the empty branching process

- 1. Start with the empty branching process
- 2. Add transitions one at the time, in order of increasing size of their sets of causes

- $1. \ \mbox{Start}$ with the empty branching process
- 2. Add transitions one at the time, in order of increasing size of their sets of causes
- On adding t, compare M([t]) with M([t']) for each t' that was added before t

- $1. \ \mbox{Start}$ with the empty branching process
- 2. Add transitions one at the time, in order of increasing size of their sets of causes
- On adding t, compare M([t]) with M([t']) for each t' that was added before t
- 4. If M([t]) = M([t']), then t is a cut-off transition, and its successors are not explored

- $1. \ \mbox{Start}$ with the empty branching process
- 2. Add transitions one at the time, in order of increasing size of their sets of causes
- On adding t, compare M([t]) with M([t']) for each t' that was added before t
- 4. If M([t]) = M([t']), then t is a cut-off transition, and its successors are not explored
- 5. Terminate when no further transitions can be added.

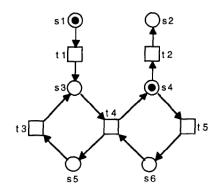
Algorithm

- $1. \ \mbox{Start}$ with the empty branching process
- 2. Add transitions one at the time, in order of increasing size of their sets of causes
- On adding t, compare M([t]) with M([t']) for each t' that was added before t
- 4. If M([t]) = M([t']), then t is a cut-off transition, and its successors are not explored
- 5. Terminate when no further transitions can be added.

Remark

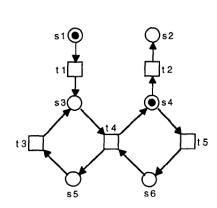
Termination is ensured by the finiteness of the number of reachable markings on N, as N is one-bounded.

Example net and one of its branching processes

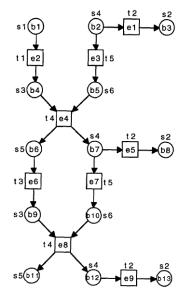


A sample one-bounded elementary system net

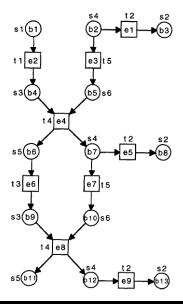
Example net and one of its branching processes



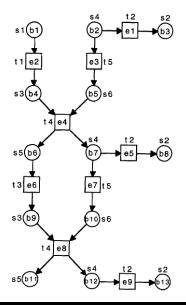
A sample one-bounded elementary system net

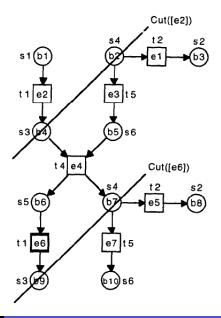


Its McMillan prefix

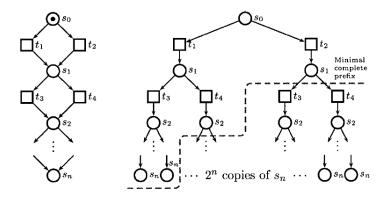


Its McMillan prefix





An exponentially-sized McMillan prefix



For every marking M all the configurations [t] satisfying M([t]) = M have the same size, and therefore there exist no cut-off events [Kishinevsky and Taubin]

Overview

Introduction

- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix

> A branching process captures several distributed runs of N

- \blacktriangleright A branching process captures several distributed runs of N
- It is represented by a relaxed notion of causal net, the occurrence net

- \blacktriangleright A branching process captures several distributed runs of N
- ▶ It is represented by a relaxed notion of causal net, the occurrence net
- Branching processes are mapped to N via homomorphisms

- \blacktriangleright A branching process captures several distributed runs of N
- It is represented by a relaxed notion of causal net, the occurrence net
- Branching processes are mapped to N via homomorphisms
- A homomorphism is a structure-preserving mapping between two nets

- ► A branching process captures several distributed runs of N
- ▶ It is represented by a relaxed notion of causal net, the occurrence net
- Branching processes are mapped to N via homomorphisms
- A homomorphism is a structure-preserving mapping between two nets
- ► Approximation (denoted ⊆) is a partial-order on branching processes

- ► A branching process captures several distributed runs of N
- ▶ It is represented by a relaxed notion of causal net, the occurrence net
- ► Branching processes are mapped to *N* via homomorphisms
- A homomorphism is a structure-preserving mapping between two nets
- Approximation (denoted \sqsubseteq) is a partial-order on branching processes
- Isomorphic branching process with \sqsubseteq are a complete lattice

- ► A branching process captures several distributed runs of N
- It is represented by a relaxed notion of causal net, the occurrence net
- Branching processes are mapped to N via homomorphisms
- A homomorphism is a structure-preserving mapping between two nets
- ► Approximation (denoted ⊆) is a partial-order on branching processes
- ▶ Isomorphic branching process with \sqsubseteq are a complete lattice
- ▶ True concurrency semantics of N = the maximal element (under \sqsubseteq)

- ► A branching process captures several distributed runs of N
- ▶ It is represented by a relaxed notion of causal net, the occurrence net
- Branching processes are mapped to N via homomorphisms
- A homomorphism is a structure-preserving mapping between two nets
- Approximation (denoted \sqsubseteq) is a partial-order on branching processes
- Isomorphic branching process with \sqsubseteq are a complete lattice
- ▶ True concurrency semantics of N = the maximal element (under \sqsubseteq)

For 1-bounded nets, the McMillan prefix covers all reachable markings